Logotipo ImpactU
Autor

Representation and classification of geospatial data: a comparison of Kohonen's maps and the Neural Gas method

Acceso Abierto

Abstract:

Approximately 80% of all the existing information in the world correspond to geo-referenced information. This creates an increasing necessity to have tools more flexible, precise and easy to use to the visualization, exploration and classification of great volumes of geospatial data. Additionally its necessary achieve smaller times to process this kind of information. In this preliminary investigation, different techniques are compared to visualize and to classify geo-referenced data using two types of neuronal networks: Kohonen's maps (SOM) and the Neural Gas method (NG). For the visualization cases, SOM showed a better performance than NG, occurring the opposite case for the classification examples.

Tópico:

Neural Networks and Applications

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteIngeniería e Investigación
Cuartil año de publicaciónNo disponible
Volumen23
Issue3
Páginas12 - 22
pISSN0120-5609
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista