Logotipo ImpactU
Autor

Discriminative training for Convolved Multiple-Output Gaussian processes

Acceso Abierto
ID Minciencias: ART-0001406168-11
Ranking: ART-GC_ART

Abstract:

Multi-output Gaussian processes (MOGP) are probability distributions over vector-valued functions, and have been previously used for multi-output regression and for multi-class classification. A less explored facet of the multi-output Gaussian process is that it can be used as a generative model for vector-valued random fields in the context of pattern recognition. As a generative model, the multi-output GP is able to handle vector-valued functions with continuous inputs, as opposed, for example, to hidden Markov models. It also offers the ability to model multivariate random functions with high dimensional inputs. In this report, we use a discriminative training criteria known as Minimum Classification Error to fit the parameters of a multi-output Gaussian process. We compare the performance of generative training and discriminative training of MOGP in emotion recognition, activity recognition, and face recognition. We also compare the proposed methodology against hidden Markov models trained in a generative and in a discriminative way.

Tópico:

Gaussian Processes and Bayesian Inference

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Scienti ID0001406168-11Minciencias IDART-0001406168-11Openalex URLhttps://openalex.org/W4300750133
Doi URLhttps://doi.org/10.48550/arxiv.1502.02089Open_access URLhttps://arxiv.org/abs/1502.02089
Publicaciones editoriales no especializadas