Logotipo ImpactU
Autor

Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface

Acceso Abierto

Abstract:

Motor imagery (MI)-based brain-computer interface (BCI) systems have shown promising advances for lower limb motor rehabilitation. The purpose of this study was to develop an MI-based BCI for the actions of standing and sitting. Thirty-two healthy subjects participated in the study using 17 active EEG electrodes. We used a combination of the filter bank common spatial pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA) technique for decoding EEG rhythms offline and online during motor imagery for standing and sitting. The offline analysis indicated the classification of motor imagery and idle state provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69 ± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that the MI-based BCI may be useful to future brain-controlled standing systems.

Tópico:

EEG and Brain-Computer Interfaces

Citaciones:

Citations: 13
13

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteFrontiers in Neuroinformatics
Cuartil año de publicaciónNo disponible
Volumen16
IssueNo disponible
Páginas961089 - N/A
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista