Constructing the mathematical foundations of probability theory has proven to be a long-lasting process of trial and error. The approach consisting of defining probabilities as relative frequencies in cases of repeatable experiments leads to an unsatisfactory theory. The frequency view of probability has a long history that goes back to Aristotle. It was not until 1933 that the great Russian mathematician Andrej Nikolajewitsch Kolmogorov (1903–1987) laid a satisfactory mathematical foundation of probability theory. He did this by taking a number of axioms as his starting point, as had been done in other fields of mathematics. Axioms state a number of minimal requirements that the mathematical objects in question (such as points and lines in geometry) must satisfy. In the axiomatic approach of Kolmogorov, probability figures as a function on subsets of a sample space. The axioms are the basis for the mathematical theory of probability. As a milestone, the law of large numbers can be deduced from the axioms by logical reasoning. The law of large numbers confirms our intuition that the probability of an event in a repeatable experiment can be estimated by the relative frequency of its occurrence in many repetitions of the experiment. This law, which has already been discussed in Chapter 2, is the fundamental link between theory and the real world. The purpose of this chapter is to discuss the axioms of probability theory in more detail and to derive from the axioms the most basic rules for the calculation of probabilities.