Logotipo ImpactU
Autor

Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C∞ Semigroups

Acceso Abierto

Abstract:

We consider Fourier multiplier systems on Rn with components belonging to the standard Hörmander class S1,0mRn, but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ⊂C (introduced by Denk, Saal, and Seiler) we show the generation of both C∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces WpkRn,Cq with k∈N0, 1≤p<∞ and q∈N. For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.

Tópico:

Advanced Mathematical Modeling in Engineering

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteMathematics
Cuartil año de publicaciónNo disponible
Volumen10
Issue5
Páginas751 - 751
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista