Logotipo ImpactU
Autor

Algebraic properties of face algebras

Acceso Abierto

Abstract:

Prompted by an inquiry of Manin on whether a coacting Hopf-type structure [Formula: see text] and an algebra [Formula: see text] that is coacted upon share algebraic properties, we study the particular case of [Formula: see text] being a path algebra [Formula: see text] of a finite quiver [Formula: see text] and [Formula: see text] being Hayashi’s face algebra [Formula: see text] attached to [Formula: see text]. This is motivated by the work of Huang, Wicks, Won and the second author, where it was established that the weak bialgebra coacting universally on [Formula: see text] (either from the left, right, or both sides compatibly) is [Formula: see text]. For our study, we define the Kronecker square [Formula: see text] of [Formula: see text], and show that [Formula: see text] as unital graded algebras. Then we obtain ring-theoretic and homological properties of [Formula: see text] in terms of graph-theoretic properties of [Formula: see text] by way of [Formula: see text].

Tópico:

Algebraic structures and combinatorial models

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Algebra and Its Applications
Cuartil año de publicaciónNo disponible
Volumen22
Issue03
Páginas2350076 - N/A
pISSNNo disponible
ISSN0219-4988

Enlaces e Identificadores:

Artículo de revista