Let <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> be an additive group of order <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula>. A <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-element subset <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called a <inline-formula> <tex-math notation="LaTeX">$(v, k, \lambda, t)$ </tex-math></inline-formula>-almost difference set if the expressions <inline-formula> <tex-math notation="LaTeX">$g-h$ </tex-math></inline-formula>, for <inline-formula> <tex-math notation="LaTeX">$g$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula> in <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula>, represent <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> of the non-identity elements in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> exactly <inline-formula> <tex-math notation="LaTeX">$\lambda $ </tex-math></inline-formula> times and every other non-identity element <inline-formula> <tex-math notation="LaTeX">$\lambda + 1$ </tex-math></inline-formula> times. Almost difference sets are highly sought after as they can be used to produce functions with optimal nonlinearity, cyclic codes, and sequences with three-level autocorrelation. A set of positive integers <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> is called a Golomb ruler if the difference between two distinct elements of <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> are different. In this paper, we use Singer type Golomb rulers to construct new families of almost difference sets. Additionally, we constructed 2-adesigns from these almost difference sets.