Logotipo ImpactU
Autor

Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative in the Mexican stock exchange

Acceso Abierto

Abstract:

This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.

Tópico:

Stock Market Forecasting Methods

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteRevista Finanzas y Política Económica
Cuartil año de publicaciónNo disponible
Volumen13
Issue2
Páginas237 - 268
pISSN2248-6046
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista