Logotipo ImpactU
Autor

Modelación de riesgo de crédito de personas naturales. Un caso aplicado a una caja de compensación familiar colombiana

Acceso Abierto

Abstract:

Los modelos de tipo Credit Score permiten a los analistas de crédito la cuantificación de los riesgos que implican las operaciones de crédito, la segmentación de afiliados y la recomendación de decisiones de otorgamiento o rechazo de un crédito para personas naturales. Estos modelos buscan entregar la información necesaria para inferir sobre las probabilidades de impago de un afiliado, mediante la aplicación de técnicas paramétricas o no paramétricas. En este trabajo se busca identificar cuáles de los siguientes modelos pueden ser más apropiados para medir el riesgo de crédito de personas naturales en una caja de compensación familiar ubicada en Colombia: Logit, Probit, Redes Neuronales o Linear Support-Vector Machine. Los resultados obtenidos muestran que, si bien los Linear Support Vector Machine pueden tener mejor desempeño, los modelos Probit-Stepwise son igualmente útiles y tienen como ventaja la posibilidad de interpretar los parámetros calibrados.

Tópico:

Financial Distress and Bankruptcy Prediction

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteRevista de Métodos Cuantitativos para la Economía y la Empresa
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista