Chagas cardiomyopathy is a parasitic infection caused by Trypanosoma cruzi. Structural and functional abnormalities are the result of direct myocardial damage by the parasite, immunological reactions, dysautonomia, and microvascular alterations. Chronic Chagas cardiomyopathy (CCC) is the most serious and important manifestation of the disease, affecting up to 30% of patients in the chronic phase. It results in heart failure, arrhythmias, thromboembolism, and sudden cardiac death. As in other cardiomyopathies, scar-related reentry frequently results in ventricular tachycardia (VT). The scars typically are located in the inferior and lateral aspects of the left ventricle close to the mitral annulus extending from endocardium to epicardium. The scars may be more prominent in the epicardium than in the endocardium, so epicardial mapping and ablation frequently are required. Identification of late potentials during sinus rhythm and mid-diastolic potentials during hemodynamically tolerated VT are the main targets for ablation. High-density mapping during sinus rhythm can identify late isochronal regions that are then targeted for ablation. Preablation cardiac magnetic resonance imaging with late enhancement can identify potentials areas of arrhythmogenesis. Therapeutic alternatives for VT management include antiarrhythmic drugs and modulation of the cardiac autonomic nervous system. Chagas cardiomyopathy is a parasitic infection caused by Trypanosoma cruzi. Structural and functional abnormalities are the result of direct myocardial damage by the parasite, immunological reactions, dysautonomia, and microvascular alterations. Chronic Chagas cardiomyopathy (CCC) is the most serious and important manifestation of the disease, affecting up to 30% of patients in the chronic phase. It results in heart failure, arrhythmias, thromboembolism, and sudden cardiac death. As in other cardiomyopathies, scar-related reentry frequently results in ventricular tachycardia (VT). The scars typically are located in the inferior and lateral aspects of the left ventricle close to the mitral annulus extending from endocardium to epicardium. The scars may be more prominent in the epicardium than in the endocardium, so epicardial mapping and ablation frequently are required. Identification of late potentials during sinus rhythm and mid-diastolic potentials during hemodynamically tolerated VT are the main targets for ablation. High-density mapping during sinus rhythm can identify late isochronal regions that are then targeted for ablation. Preablation cardiac magnetic resonance imaging with late enhancement can identify potentials areas of arrhythmogenesis. Therapeutic alternatives for VT management include antiarrhythmic drugs and modulation of the cardiac autonomic nervous system. Key Findings▪A high index of clinical suspicion is required to detect chronic Chagas cardiomyopathy in patients with ventricular tachycardia (VT) of uncertain etiology in endemic and nonendemic regions.▪Patients with drug-refractory VT and/or electrical storm can benefit from catheter ablation.▪A combined endo-epicardial approach in these patients reduces the recurrence of VT.▪Neuraxial modulation and cardiac surgical denervation can be of potential benefit in patients with VT recurrence after ablation. ▪A high index of clinical suspicion is required to detect chronic Chagas cardiomyopathy in patients with ventricular tachycardia (VT) of uncertain etiology in endemic and nonendemic regions.▪Patients with drug-refractory VT and/or electrical storm can benefit from catheter ablation.▪A combined endo-epicardial approach in these patients reduces the recurrence of VT.▪Neuraxial modulation and cardiac surgical denervation can be of potential benefit in patients with VT recurrence after ablation.