Logotipo ImpactU
Autor

A refinement of Dyck paths: A combinatorial approach

Acceso Cerrado

Abstract:

Local maxima and minima of a Dyck path are called peaks and valleys, respectively. A Dyck path is called restricted [Formula: see text]-Dyck if the difference between any two consecutive valleys is at least [Formula: see text] (right-hand side minus left-hand side) or if it has at most one valley. In this paper, we use several techniques to enumerate some statistics over this new family of lattice paths. For instance, we use the symbolic method, the Chomsky–Schűtzenberger methodology, Zeilberger’s creative telescoping method, recurrence relations, and bijective relations. We count, for example, the number of paths of length [Formula: see text], the number of peaks, the number of valleys, the number of peaks of a fixed height, and the area under the paths. We also give a bijection between the restricted [Formula: see text]-Dyck paths and a family of binary words.

Tópico:

Advanced Combinatorial Mathematics

Citaciones:

Citations: 2
2

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteDiscrete Mathematics Algorithms and Applications
Cuartil año de publicaciónNo disponible
Volumen14
Issue07
Páginas2250026 - N/A
pISSNNo disponible
ISSN1793-8309

Enlaces e Identificadores:

Artículo de revista