Abstract We present a large-scale study of stellar rotation for T Tauri stars in the Orion star-forming complex. We use the projected rotational velocity ( <?CDATA $v\sin (i)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> ) estimations reported by the APOGEE-2 collaboration as well as individual masses and ages derived from the position of the stars in the HR diagram, considering Gaia-EDR3 parallaxes and photometry plus diverse evolutionary models. We find an empirical trend for <?CDATA $v\sin (i)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> decreasing with age for low-mass stars (0.4 M ⊙ < M * < 1.2 M ⊙ ). Our results support the existence of a mechanism linking <?CDATA $v\sin (i)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> to the presence of accreting protoplanetary disks, responsible for regulating stellar rotation on timescales of about 6 Myr, which is the timescale in which most of the T Tauri stars lose their inner disk. Our results provide important constraints to models of rotation in the early phases of evolution of young stars and their disks.