Logotipo ImpactU
Autor

Sums of squares and quadratic persistence on real projective varieties

Acceso Abierto

Abstract:

We bound the Pythagoras number of a real projective subvariety: the smallest positive integer r such that every sum of squares of linear forms in its homogeneous coordinate ring is a sum of at most r squares. Enhancing existing methods, we exhibit three distinct upper bounds involving known invariants. In contrast, our lower bound depends on a new invariant of a projective subvariety called the quadratic persistence. Defined by projecting away from points, this numerical invariant is closely related to the linear syzygies of the variety. In addition, we classify the projective subvarieties of maximal and almost-maximal quadratic persistence, and determine their Pythagoras numbers.

Tópico:

Tensor decomposition and applications

Citaciones:

Citations: 3
3

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of the European Mathematical Society
Cuartil año de publicaciónNo disponible
Volumen24
Issue3
Páginas925 - 965
pISSN1435-9855
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista