Abstract ZrN-ZrO $${ }_{x}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>x</mml:mi> </mml:msub> </mml:math> N $${ }_{y}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>y</mml:mi> </mml:msub> </mml:math> and ZrO $${ }_{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -ZrO $${ }_{x}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>x</mml:mi> </mml:msub> </mml:math> N $${ }_{y}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>y</mml:mi> </mml:msub> </mml:math> coatings were deposited on 316L stainless steel substrates via the unbalanced DC magnetron sputtering technique in order to improve their corrosion resistance and evaluate their possible use as a coating biocompatible with bone cells. The composition, structure, morphology, and corrosion resistance were studied by sum means of x-ray photoelectron spectroscopy (XPS), x-Ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The corrosion resistance was evaluated in 3.5 wt.% NaCl using potentiodynamic polarization (PL) and electrochemical impedance techniques (EIS). The ZrN-ZrO $${ }_{x}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>x</mml:mi> </mml:msub> </mml:math> N $${ }_{y}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>y</mml:mi> </mml:msub> </mml:math> and ZrO $${ }_{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -ZrO $${ }_{x}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>x</mml:mi> </mml:msub> </mml:math> N $${ }_{y}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>y</mml:mi> </mml:msub> </mml:math> coatings exhibited barrier-type protection of the substrate against corrosion. The growth of mouse osteoblast cells was evaluated in the coating that exhibited the greatest resistance to corrosion, ZrO $${ }_{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -ZrO $${ }_{x}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>x</mml:mi> </mml:msub> </mml:math> N $${ }_{y}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow /> <mml:mi>y</mml:mi> </mml:msub> </mml:math> , finding that the cell viability was maintained, so this material can be considered to be a candidate for use in osteosynthesis processes.