espanolEl estudio de los numeros primos es un tema esencial para las matematicas, como el caso del Teorema Fundamental de la Aritmetica, afirma que, cualquier numero puede descomponerse en un producto unico de numeros primos. El concepto de descomponer un numero en factores unicos lo introdujo Euclides [1], quien hizo grandes aportes a las matematicas y a la geometria. En este trabajo se presenta un algoritmo, para obtener los numeros primos de un conjunto grandemente estimado, como tambien el analisis relacionado con la cantidad de numeros primos que concurren en determinado intervalo de numeros, su organizacion, clasificacion y diferencias que coexisten entre ellos. En la actualidad los numeros primos son altamente estudiados, se emplean para codificar cualquier tipo de informacion de forma segura, puesto que, estos numeros son unicos y no se ajustan a ninguna regla o patron para construirlos. EnglishThe study of prime numbers is a subject of great importance for mathematics, because they are essential for the fundamental pillars of Arithmetic, as is the case with its Fundamental Theorem, which states that any number can be decomposed into a single product. of prime numbers. This concept of decomposing a number into unique factors was introduced by Euclid, who made great contributions to mathematics and geometry. This work presents an algorithm to obtain the prime numbers in a highly considered set, as well as its analysis related to the number of prime numbers that exist in a given number interval, their organization, classification and differences that exist between them. Prime numbers are currently being studied as they are used to encode any type of information in a secure way, since these numbers are unique and do not adhere to any rule or pattern to build them.