Logotipo ImpactU
Autor

An Enhanced Joint Hilbert Embedding-Based Metric to Support Mocap Data Classification with Preserved Interpretability

Acceso Abierto

Abstract:

Motion capture (Mocap) data are widely used as time series to study human movement. Indeed, animation movies, video games, and biomechanical systems for rehabilitation are significant applications related to Mocap data. However, classifying multi-channel time series from Mocap requires coding the intrinsic dependencies (even nonlinear relationships) between human body joints. Furthermore, the same human action may have variations because the individual alters their movement and therefore the inter/intraclass variability. Here, we introduce an enhanced Hilbert embedding-based approach from a cross-covariance operator, termed EHECCO, to map the input Mocap time series to a tensor space built from both 3D skeletal joints and a principal component analysis-based projection. Obtained results demonstrate how EHECCO represents and discriminates joint probability distributions as kernel-based evaluation of input time series within a tensor reproducing kernel Hilbert space (RKHS). Our approach achieves competitive classification results for style/subject and action recognition tasks on well-known publicly available databases. Moreover, EHECCO favors the interpretation of relevant anthropometric variables correlated with players’ expertise and acted movement on a Tennis-Mocap database (also publicly available with this work). Thereby, our EHECCO-based framework provides a unified representation (through the tensor RKHS) of the Mocap time series to compute linear correlations between a coded metric from joint distributions and player properties, i.e., age, body measurements, and sport movement (action class).

Tópico:

Human Pose and Action Recognition

Citaciones:

Citations: 8
8

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteSensors
Cuartil año de publicaciónNo disponible
Volumen21
Issue13
Páginas4443 - 4443
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista