High-resolution organic carbon isotope ( δ 13 C), Hg concentration and Hg isotopes curves are presented for the Permian-Triassic boundary (PTB) sections at Guryul Ravine (India) and Meishan D (China). The total organic carbon (TOC)-normalized Hg concentrations reveal more intense environmental changes at the Latest Permian Mass Extinction (LPME) and the earliest Triassic Mass Extinction (ETME) horizons coinciding with major δ 13 C shifts. To highlight palaeoredox conditions we used redox-sensitive elements and Rare Earth Element distribution. At Meishan, three Hg/TOC spikes (I, II, and III) are observed. Spike I remains after normalization by total aluminum (Al), but disappears when normalized by total sulfur (TS). Spike III, at the base of Bed 26, corresponds with excursions in the Hg/TS and Hg/Al curves, indicating a change in paleoredox conditions from anoxic/euxinic in the framboidal pyrite-bearing sediments (Bed 26) to oxygenated sediments (Bed 27). At Guryul Ravine, four Hg/TOC spikes were observed: a clear spike I in Bed 46, spike II at the base of the framboidal pyrite-rich Bed 49, spike III at the PTB, and spike IV at the LPME horizon. Some of these Hg/TOC spikes disappear when TS or Al normalization is applied. The spike I remains in the Hg/TS and Hg/Al curves (oxic conditions), spike II only in the Hg/TS curve (anoxic/euxinic), and spikes III and IV only in Hg/Al curves (oxic). In both sections, Hg deposition was organic-matter bound, the role of sulfides being minor and locally restricted to framboidal pyrite-bearing horizons. Positive mass-independent fractionation (MIF) for Hg odd isotopes (odd-MIF) was observed in pre-LPME samples, negative values in the LPME–PTB interval, and positive values above the ETME horizon. Most Hg-isotope patterns are probably controlled by the bathymetry of atmospheric Hg-bearing deposits. The source of Hg can be attributed to the Siberian Traps Large Igneous Province (STLIP). In the LPME-PTB interval, a complex of STLIP sills (Stage 2) intruded coal-bearing sediments. The negative δ 202 Hg, the mercury odd-MIF Δ 201 Hg patterns, and the Δ 199 Hg–Hg plot in both sections are compatible with volcanic mercury deposition. Our study shows the strength of Hg/TOC ratios as paleoenvironmental proxy and as a tool for stratigraphic correlation.