Abstract A new method based on large scale structure observations is proposed to probe a possible temporal variation of the fine-structure constant ( $$\alpha $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi> </mml:math> ). Our analyses are based on time-delay of Strong Gravitational Lensing and Type Ia Supernovae observations. By considering the runaway dilaton scenario, where the cosmological temporal evolution of the fine-structure constant is given by $$\frac{\Delta \alpha }{\alpha } \approx -\gamma \ln {(1+z)}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>α</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:mfrac> <mml:mo>≈</mml:mo> <mml:mo>-</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>ln</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , we obtain limits on the physical properties parameter of the model ( $$\gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γ</mml:mi> </mml:math> ) at the level $$10^{-2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> ( $$1\sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mi>σ</mml:mi> </mml:mrow> </mml:math> ). Although our limits are less restrictive than those obtained by quasar spectroscopy, the approach presented here provides new bounds on the possibility of $$\frac{\Delta \alpha }{\alpha } \ne 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>α</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:mfrac> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> at a different range of redshifts.