<p>Mauritia flexuosa palm swamp, the prevailing Peruvian Amazon peatland ecosystem, is</p><p>extensively threatened by degradation. The unsustainable practice of cutting whole</p><p>palms for fruit extraction modifies forest's structure and composition and eventually</p><p>alters peat-derived greenhouse gas (GHG) emissions. We evaluated the spatio-temporal</p><p>variability of soil N<sub>2</sub>O and CH<sub>4</sub> fluxes and environmental controls along a palm swamp</p><p>degradation gradient formed by one undegraded site (Intact), one moderately degraded</p><p>site (mDeg) and one heavily degraded site (hDeg). Microscale variability differentiated</p><p>hummocks supporting live or cut palms from surrounding hollows. Macroscale analysis</p><p>considered structural changes in vegetation and soil microtopography as impacted</p><p>by degradation. Variables were monitored monthly over 3 years to evaluate intra- and</p><p>inter-annual variability. Degradation induced microscale changes in N<sub>2</sub>O and CH<sub>4</sub> emission</p><p>trends and controls. Site-scale average annual CH<sub>4</sub> emissions were similar along the</p><p>degradation gradient (225.6 ± 50.7, 160.5 ± 65.9 and 169.4 ± 20.7 kg C ha<sup>−1</sup> year<sup>−1</sup> at</p><p>the Intact, mDeg and hDeg sites, respectively). Site-scale average annual N<sub>2</sub>O emissions</p><p>(kg N ha<sup>−1</sup> year<sup>−1</sup>) were lower at the mDeg site (0.5 ± 0.1) than at the Intact (1.3 ± 0.6) and</p><p>hDeg sites (1.1 ± 0.4), but the difference seemed linked to heterogeneous fluctuations</p><p>in soil water-filled pore space (WFPS) along the forest complex rather than to degradation.</p><p>Monthly and annual emissions were mainly controlled by variations in WFPS, water</p><p>table level (WT) and net nitrification for N<sub>2</sub>O; WT, air temperature and net nitrification</p><p>for CH<sub>4</sub>. Site-scale N<sub>2</sub>O emissions remained steady over years, whereas CH<sub>4</sub> emissions</p><p>rose exponentially with increased precipitation. While the minor impact of degradation</p><p>on palm swamp peatland N<sub>2</sub>O and CH<sub>4</sub> fluxes should be tested elsewhere, the evidenced</p><p>large and variable CH<sub>4</sub> emissions and significant N<sub>2</sub>O emissions call for improved modeling</p><p>of GHG dynamics in tropical peatlands to test their response to climate changes.</p>