Logotipo ImpactU
Autor

Water footprint and consumption of hydropower from basin-constrained water mass balance

Acceso Abierto

Abstract:

Water management by the impoundment of reservoirs has been found to influence evapotranspiration not only locally but also at the basin scale. Highly regulated hydrological basins generally show the effect of a net increase in evapotranspiration accompanying the successive impoundment of reservoirs. However, understanding and isolating the effect from a particular single impounded reservoir remains a challenge due to the lack of long-term observation data required and the existence of many other drivers present at the basin scale. Focusing on the hydrological basin having the largest hydropower potential in China, we isolated in time and space and quantified the effects of a single impounded reservoir on evapotranspiration and the evaporative ratio (i.e., the ratio of actual evapotranspiration to precipitation) before and after the construction of the Ertan Dam in 1998. We find that the dam has increased evapotranspiration in the smallest subbasin by 46±15 mm/yr and the evaporative ratio by 0.05±0.015, from the period before impoundment (1983-1997) to that after impoundment (2000-2012). This increase is found only within the smallest differential subbasin holding the impounded reservoir and cannot be explained by other changes in land use or vegetation. We use this result from our hydrological basin-constrained approach to calculate the water footprint of the hydroelectric project as 16.5 m3/GJ, which accounts for additional hydroclimatic effects of the impoundment of the reservoir beyond the water surface. Hence, this study finds that when runoff data is available, the water consumption and the water footprint of hydropower projects can be calculated by water mass balance at the scale of their hydrological basins.

Tópico:

Hydrology and Watershed Management Studies

Citaciones:

Citations: 12
12

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteAdvances in Water Resources
Cuartil año de publicaciónNo disponible
Volumen153
IssueNo disponible
Páginas103947 - 103947
pISSNNo disponible
ISSN0309-1708

Enlaces e Identificadores:

Artículo de revista