Logotipo ImpactU
Autor

Coriolis-induced instabilities in centrifuge modeling of granular flow

Acceso Abierto

Abstract:

Abstract Granular flows are typically studied in laboratory flumes based on common similarity scaling, which create stress fields that only roughly approximate field conditions. The geotechnical centrifuge produces stress conditions that are closer to those observed in the field, but steady conditions can be hardly achieved. Moreover, secondary effects induced by the apparent Coriolis acceleration, which can either dilate or compress the flow, often obscure scaling. This work aims at studying a set of numerical experiments where the effects of the Coriolis acceleration are measured and analyzed. Three flow states are observed: dense, dilute, and unstable. It is found that flows generated under the influence of dilative Coriolis accelerations are likely to become unstable. Nevertheless, a steady dense flow can still be obtained if a large centrifuge is used. A parametric group is proposed to predict the insurgence of instabilities; this parameter can guide experimental designs and could help to avoid damage to the experimental apparatus and model instrumentation. Graphic abstract

Tópico:

Granular flow and fluidized beds

Citaciones:

Citations: 12
12

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteGranular Matter
Cuartil año de publicaciónNo disponible
Volumen23
Issue2
Páginas1 - 8
pISSNNo disponible
ISSN1434-5021

Enlaces e Identificadores:

Artículo de revista