Logotipo ImpactU
Autor

Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight

Acceso Abierto

Abstract:

<p style='text-indent:20px;'>We prove the existence of infinitely many sign changing radial solutions for a <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian Dirichlet problem in a ball. Our problem involves a weight function that is positive at the center of the unit ball and negative in its boundary. Standard initial value problems-phase plane analysis arguments do not apply here because solutions to the corresponding initial value problem may blow up near the boundary due to the fact that our weight function is negative at the boundary. We overcome this difficulty by connecting the solutions to a singular initial value problem with those of a regular initial value problem that vanishes at the boundary.

Tópico:

Nonlinear Partial Differential Equations

Citaciones:

Citations: 4
4

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteDiscrete and Continuous Dynamical Systems
Cuartil año de publicaciónNo disponible
Volumen41
Issue10
Páginas4805 - 4805
pISSNNo disponible
ISSN1078-0947

Enlaces e Identificadores:

Artículo de revista