Abstract We show that any compact surface of genus zero in $${\mathbb {R}}^3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> that satisfies a quasiconformal inequality between its principal curvatures is a round sphere. This solves an old open problem by H. Hopf, and gives a spherical version of Simon’s quasiconformal Bernstein theorem. The result generalizes, among others, Hopf’s theorem for constant mean curvature spheres, the classification of round spheres as the only compact elliptic Weingarten surfaces of genus zero, and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous coefficients.
Tópico:
Geometric Analysis and Curvature Flows
Citaciones:
5
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteCalculus of Variations and Partial Differential Equations