Logotipo ImpactU
Autor

Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations

Acceso Abierto
ID Minciencias: ART-0000495883-27
Ranking: ART-ART_A1

Abstract:

We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pressure. The unique solvability of the continuous problem is addressed by invoking a global inf-sup property in an adequate abstract setting for non-symmetric systems. The proposed finite element schemes, which produce exactly divergence-free discrete velocities, are shown to be well-defined and optimal convergence rates are derived in suitable norms. This mixed finite element method is also pressure-robust. In addition, we establish optimal rates of convergence for a class of discontinuous Galerkin schemes, which employ stabilisation. A set of numerical examples serves to illustrate salient features of these methods.

Tópico:

Advanced Numerical Methods in Computational Mathematics

Citaciones:

Citations: 15
15

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Scientific Computing
Cuartil año de publicaciónNo disponible
Volumen80
Issue3
Páginas1577 - 1606
pISSNNo disponible
ISSN1573-7691

Enlaces e Identificadores:

Artículo de revista