Logotipo ImpactU
Autor

Critical Diagnosis in Brain MRI Studies based on Image Signal Intensity and Supervised Learning

Acceso Cerrado

Abstract:

The main objective of this investigation is to propose a new methodology for the detection of significantly critical findings related to the brain. To validate our method, we used magnetic resonance studies of 98 patients: 33 with healthy brains and 65 with brain pathologies. The proposed methodology was evaluated with five different machine learning classification models: KNN, Naive Bayes, Logistic Regression, Decision Tree and Random Forest. The supervised classification of these models shows outstanding results: the Naive Bayes model had the best results about the accuracy, kappa, and F-score, which was 100%. Due to its high performance in critical diagnosis classifications, it would allow prioritizing reading tasks, which could lead to a better clinical outcome for the patient.

Tópico:

Brain Tumor Detection and Classification

Citaciones:

Citations: 3
3

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteNo disponible
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas1 - 6
pISSNNo disponible
ISSNNo disponible
Perfil OpenAlexNo disponible

Enlaces e Identificadores:

Artículo de revista