Logotipo ImpactU
Autor

Finite difference method applied to heat transfer in polymers

Acceso Abierto
ID Minciencias: ART-0000226920-66
Ranking: ART-GC_ART

Abstract:

Absatract The study of efficient solution methods for mathematical models from physics is important for the purpose of making predictions. In the study of the equations of mathematical physics, the heat equation has an important place. Techniques for studying heat transfer include topics such as Fourier analysis, Bessel functions, Legendre polynomials, etc. Throughout this article we will study the heat equation from the point of view of calculating its solutions. For this reason, the solution of the heat equation is proposed by the Fourier method and the explicit numerical method. In the last part of the article studies the accuracy of the numerical method in relation to heat transfer in a spherical polymer and raises the advantage of working with numerical methods to solve mathematical models derived from conservative laws.

Tópico:

Model Reduction and Neural Networks

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Physics Conference Series
Cuartil año de publicaciónNo disponible
Volumen1672
Issue1
Páginas012003 - 012003
pISSNNo disponible
ISSN1742-6596

Enlaces e Identificadores:

Scienti ID0000226920-66Minciencias IDART-0000226920-66Open_access URLhttps://doi.org/10.1088/1742-6596/1672/1/012003
Openalex URLhttps://openalex.org/W3096548027Doi URLhttps://doi.org/10.1088/1742-6596/1672/1/012003
Publicaciones editoriales no especializadas