Logotipo ImpactU
Autor

Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation

Acceso Abierto

Abstract:

For the generalized surface quasi-geostrophic equation $$\left\{ \begin{aligned} & \partial_t \theta+u\cdot \nabla \theta=0, \quad \text{in } \mathbb{R}^2 \times (0,T), \\ & u=\nabla^\perp \psi, \quad \psi = (-\Delta)^{-s}\theta \quad \text{in } \mathbb{R}^2 \times (0,T) , \end{aligned} \right. $$ $0<s<1$, we consider for $k\ge1$ the problem of finding a family of $k$-vortex solutions $\theta_\varepsilon(x,t)$ such that as $\varepsilon\to 0$ $$ \theta_\varepsilon(x,t) \rightharpoonup \sum_{j=1}^k m_j\delta(x-\xi_j(t)) $$ for suitable trajectories for the vortices $x=\xi_j(t)$. We find such solutions in the special cases of vortices travelling with constant speed along one axis or rotating with same speed around the origin. In those cases the problem is reduced to a fractional elliptic equation which is treated with singular perturbation methods. A key element in our construction is a proof of the non-degeneracy of the radial ground state for the so-called fractional plasma problem $$(-\Delta)^sW = (W-1)^\gamma_+, \quad \text{in } \mathbb{R}^2, \quad 1<\gamma < \frac{1+s}{1-s}$$ whose existence and uniqueness have recently been proven in \cite{chan_uniqueness_2020}.

Tópico:

Navier-Stokes equation solutions

Citaciones:

Citations: 9
9

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
Volumen374
IssueNo disponible
Páginas6665 - 6689
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista