Polyps, represented as abnormal protuberances along intestinal track, are the main biomarker to diagnose gastrointestinal cancer. During routine colonoscopies such polyps are localized and coarsely characterized according to microvascular and surface textural patterns. Narrow-band imaging (NBI) sequences have emerged as complementary technique to enhance description of suspicious mucosa surfaces according to blood vessels architectures. Nevertheless, a high number of misleading polyp characterization, together with expert dependency during evaluation, reduce the possibility of effective disease treatments. Additionally, challenges during colonoscopy, such as abrupt camera motions, changes of intensity and artifacts, difficult the diagnosis task. This work introduces a robust frame-level convolutional strategy with the capability to characterize and predict hyperplastic, adenomas and serrated polyps over NBI sequences. The proposed strategy was evaluated over a total of 76 videos achieving an average accuracy of 90,79% to distinguish among these three classes. Remarkably, the approach achieves a 100% of accuracy to differentiate intermediate serrated polyps, whose evaluation is challenging even for expert gastroenterologist. The approach was also favorable to support polyp resection decisions, achieving perfect score on evaluated dataset.