Logotipo ImpactU
Autor

Generalized adversarial networks for stress field recovering processes from photoelasticity images

Acceso Cerrado

Abstract:

For overcoming conventional photoelasticity limitations when evaluating the stress field in loaded bodies, this paper proposes a Generative Adversarial Network (GAN) while maintaining performance, gaining experimental stability, and shorting time response. Due to the absence of public photoelasticity data, a synthetic dataset was generated by using analytic stress maps and crops from them. In this case, more than 100000 pair of images relating fringe colors to their respective stress surfaces were used for learning to unwrap the stress information contained into the fringes. Main results of the model indicate its capability of recovering the stress field achieving an averaged performance of 0.93±0.18 according to the structural similarity index (SSIM). These results represent a great opportunity for exploring GAN models in real time stress evaluations.

Tópico:

Optical measurement and interference techniques

Citaciones:

Citations: 8
8

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteNo disponible
Cuartil año de publicaciónNo disponible
Volumen11510
IssueNo disponible
Páginas138 - 147
pISSNNo disponible
ISSNNo disponible
Perfil OpenAlexNo disponible

Enlaces e Identificadores:

Artículo de revista