Logotipo ImpactU
Autor

Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

Acceso Abierto
ID Minciencias: ART-0000008370-381
Ranking: ART-ART_A1

Abstract:

Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb−1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.

Tópico:

Particle physics theoretical and experimental studies

Citaciones:

Citations: 131
131

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Instrumentation
Cuartil año de publicaciónNo disponible
Volumen15
Issue06
PáginasP06005 - P06005
pISSNNo disponible
ISSN1748-0221

Enlaces e Identificadores:

Scienti ID0000037206-29667Scienti ID0000037206-29680Minciencias IDART-0000008370-381
Scienti ID0001668438-331Scienti ID0001376231-341Scienti ID0000008370-381
Scienti ID0001539573-46Doi URLhttps://doi.org/10.1088/1748-0221/15/06/p06005Scienti URLhttps://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
Open_access URLhttps://doi.org/10.1088/1748-0221/15/06/p06005Openalex URLhttps://openalex.org/W3022100264
Artículo de revista