Obtaining an accurate forecast of the energy demand is fundamental to support the several decision processes of the electricity service agents in a country. For market operators, a greater precision in the short-term load forecasting implies a more efficient programming of the electricity generation resources, which means a reduction in costs. In the long term, it constitutes a main indicator for the generation of investment signals for future installed capacity. This research proposes a prognostic model for the demand of electrical energy in Bogota, Colombia at hourly level in a full week, through Artificial Neural Network.