<p style='text-indent:20px;'>We investigate the long-time solvability in Besov spaces of the initial value problem for the inviscid 3D-Boussinesq equations with Coriolis force. First we prove a local existence and uniqueness result with critical and supercritical regularity and existence-time <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> uniform with respect to the rotation speed <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>. Afterwards, we show a blow-up criterion of BKM type, estimates for arbitrarily large <inline-formula><tex-math id="M3">\begin{document}$ T $\end{document}</tex-math></inline-formula>, and then obtain the long-time existence and uniqueness of solutions for arbitrary initial data, provided that <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is large enough.
Tópico:
Advanced Mathematical Physics Problems
Citaciones:
1
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteDiscrete and Continuous Dynamical Systems - B