Logotipo ImpactU
Autor

Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations

Acceso Abierto
ID Minciencias: ART-0000172596-131
Ranking: ART-ART_A1

Abstract:

In this paper we establish the nonlinear orbital instability of ground state standing waves for a Benney-Roskes/Zakharov-Rubenchik system that models the interaction of low amplitude high frequency waves, acustic type waves in $ N = 2 $ and $ N = 3 $ spatial directions. For $ N = 2 $, we follow M. Weinstein's approach used in the case of the Schrödinger equation, by establishing a virial identity that relates the second variation of a momentum type functional with the energy (Hamiltonian) on a class of solutions for the Benney-Roskes/Zakharov-Rubenchik system. From this identity, it is possible to show that solutions for the Benney-Roskes/Zakharov-Rubenchik system blow up in finite time, in the case that the energy (Hamiltonian) of the initial data is negative, indicating a possible blow-up result for non radial solutions to the Zakharov equations. For $ N = 3 $, we establish the instability by using a scaling argument and the existence of invariant regions under the flow due to a concavity argument.

Tópico:

Advanced Mathematical Physics Problems

Citaciones:

Citations: 10
10

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteDiscrete and Continuous Dynamical Systems - B
Cuartil año de publicaciónNo disponible
Volumen25
Issue4
Páginas1213 - 1240
pISSNNo disponible
ISSN1531-3492

Enlaces e Identificadores:

Artículo de revista