Logotipo ImpactU
Autor

L∞-algebras and the perturbiner expansion

Acceso Abierto
ID Minciencias: ART-0000154881-17
Ranking: ART-ART_A1

Abstract:

Certain classical field theories admit a formal multi-particle solution, known as the perturbiner expansion, that serves as a generating function for all the tree-level scattering amplitudes and the Berends-Giele recursion relations they satisfy. In this paper it is argued that the minimal model for the $L_{\infty}$-algebra that governs a classical field theory contains enough information to determine the perturbiner expansion associated to such theory. This gives a prescription for computing the tree-level scattering amplitudes by inserting the perturbiner solution into the homotopy Maurer-Cartan action for the $L_{\infty}$-algebra. We confirm the method in the non-trivial examples of bi-adjoint scalar and Yang-Mills theories.

Tópico:

Black Holes and Theoretical Physics

Citaciones:

Citations: 14
14

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of High Energy Physics
Cuartil año de publicaciónNo disponible
Volumen2019
Issue11
Páginas1 - 32
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista