Logotipo ImpactU
Autor

Galoisian approach for a Sturm-Liouville problem on the infinite interval

Acceso Abierto
ID Minciencias: ART-0001268627-4
Ranking: ART-GC_ART

Abstract:

We study a Sturm-Liouville type eigenvalue problem for second-order differential equations on the infinite interval (-∞, ∞).Here the eigenfunctions are nonzero solutions exponentially decaying at infinity.We prove that at any discrete eigenvalue the differential equations are integrable in the setting of differential Galois theory under general assumptions.Our result is illustrated with three examples for a stationary Schrödinger equation having a generalized Hulthén potential; a linear stability equation for a traveling front in the Allen-Cahn equation; and an eigenvalue problem related to the Lamé equation.

Tópico:

Spectral Theory in Mathematical Physics

Citaciones:

Citations: 5
5

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteMethods and Applications of Analysis
Cuartil año de publicaciónNo disponible
Volumen19
Issue3
Páginas267 - 288
pISSNNo disponible
ISSN1073-2772

Enlaces e Identificadores:

Publicaciones editoriales no especializadas