Logotipo ImpactU
Autor

The Complexity of Computing the Cylindrical and the $t$-Circle Crossing Number of a Graph

Acceso Abierto
ID Minciencias: ART-0001570942-7
Ranking: ART-ART_A2

Abstract:

A plane drawing of a graph is cylindrical if there exist two concentric circles that contain all the vertices of the graph, and no edge intersects (other than at its endpoints) any of these circles. The cylindrical crossing number of a graph \(G\) is the minimum number of crossings in a cylindrical drawing of \(G\). In his influential survey on the variants of the definition of the crossing number of a graph, Schaefer lists the complexity of computing the cylindrical crossing number of a graph as an open question. In this paper, we prove that the problem of deciding whether a given graph admits a cylindrical embedding is NP-complete, and as a consequence we show that the \(t\)-cylindrical crossing number problem is also NP-complete. Moreover, we show an analogous result for the natural generalization of the cylindrical crossing number, namely the \(t\)-crossing number.

Tópico:

Computational Geometry and Mesh Generation

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteThe Electronic Journal of Combinatorics
Cuartil año de publicaciónNo disponible
Volumen25
Issue2
PáginasNo disponible
pISSNNo disponible
ISSN1097-1440

Enlaces e Identificadores:

Artículo de revista