Logotipo ImpactU
Autor

An elementary proof of the symplectic spectral theorem

Acceso Abierto

Abstract:

The classical spectral theorem completely describes self-adjoint operators on finite-dimensional inner product vector spaces as linear combinations of orthogonal projections onto pairwise orthogonal subspaces. We prove a similar theorem for self-adjoint operators on finite-dimensional symplectic vector spaces over perfect fields. We show that these operators decompose according to a polarization, i.e. as the product of an operator on a Lagrangian subspace and its dual on a complementary Lagrangian. Moreover, if all the eigenvalues of the operator are in the base field, then there exists a Darboux basis such that the matrix representation of the operator is [Formula: see text] blocks block-diagonal, where the first block is in Jordan normal form and the second block is the transpose of the first one.

Tópico:

Algebraic structures and combinatorial models

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteAsian-European Journal of Mathematics
Cuartil año de publicaciónNo disponible
Volumen12
Issue03
Páginas1950033 - 1950033
pISSNNo disponible
ISSN1793-5571

Enlaces e Identificadores:

Artículo de revista