It is shown that Matet’s characterization of the Ramsey property relative to a selective co-ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of games of Kastanas, still holds if we consider semiselectivity instead of selectivity. Moreover, we prove that a co-ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is semiselective if and only if Matet’s game-theoretic characterization of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Ramsey property holds. This lifts Kastanas’s characterization of the classical Ramsey property to its optimal setting, from the point of view of the local Ramsey theory, and gives a game-theoretic counterpart to a theorem of Farah, asserting that a co-ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is semiselective if and only if the family of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Ramsey subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper N Superscript left-bracket normal infinity right-bracket"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">[</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {N}^{[\infty ]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincides with the family of those sets having the abstract <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Baire property. Finally, we show that under suitable assumptions, for every semiselective co-ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all sets of real numbers are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper H"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Ramsey.
Tópico:
Advanced Topology and Set Theory
Citaciones:
7
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteProceedings of the American Mathematical Society