Logotipo ImpactU
Autor

Colonization and collapse on Homogeneous Trees

Acceso Abierto
ID Minciencias: WP-0000002649-9
Ranking: WP-WP

Abstract:

We investigate a basic immigration process where colonies grow, during a random time, according to a general counting process until collapse. Upon collapse a random amount of individuals survive. These survivors try independently establishing new colonies at neighbour sites. Here we consider this general process subject to two schemes, Poisson growth with geometric catastrophe and Yule growth with binomial catastrophe. Independent of everything else colonies growth, during an exponential time, as a Poisson (or Yule) process and right after that exponential time their size is reduced according to geometric (or binomial) law. Each survivor tries independently, to start a new colony at a neighbour site of a homogeneous tree. That colony will thrive until its collapse, and so on. We study conditions on the set of parameters for these processes to survive, present relevant bounds for the probability of survival, for the number of vertices that were colonized and for the reach of the colonies compared to the starting point.

Tópico:

Stochastic processes and statistical mechanics

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Scienti ID0000002649-9Minciencias IDWP-0000002649-9Open_access URLhttps://arxiv.org/abs/1612.06408
Doi URLhttps://doi.org/10.48550/arxiv.1612.06408Openalex URLhttps://openalex.org/W2951823724
Documento de trabajo