Thermal degradation and kinetic for biomass materials wood residues and Gorse ( Ulex europaeus ) have been evaluated under pyrolysis (N2) conditions, using a non-isothermal thermogravimetric method (TGA) from 25°C to 900°C at different heating rates of 10, 20, 30 and 40°C min -1 . In DTG curves the temperature peaks at maximum weight loss rate changed with increasing heating rate. The maximum rate of weight loss (%s -1 ) was obtained at a heating rate of 40°C/min of 0,38 and 0,46 (%s -1 ) for wood residues and Gorse, respectively. Activation energy calculations were based on selected non-isothermal methods (Kissinger, FWO, KAS, and Starink). For Gorse, the energy activation was 195.41, 194.44, 214.39 and 179.42 kJmol -1 by Kissinger, FWO, KAS, and Starink methods, respectively. In the other hand, the energy activation for wood residues was 176.03, 221.75, 243.08 and 198.26 kJmol -1 by Kissinger, FWO, KAS, and Starink methods, respectively. The results showed that Gorse has a lower activation energy than wood residues, which represents a great potential to be used as a feedstock in thermochemical technologies. The Levelized Cost of Electricity (LCOE) was calculated for gasification of wood residues and Gorse, which was 186 and 169 USD/MWh, respectively.