We explain how dynamical systems with generating partitions are <italic>symbolically expansive,</italic> namely symbolic counterparts of the expansive ones. Similar ideas allow the notions of <italic>symbolic equicontinuity, symbolic distality, symbolic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-expansivity,</italic> and <italic>symbolic shadowing property</italic>. We analyze dynamical systems with these properties in the circle. Indeed, we show that every symbolically <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-expansive circle homeomorphism has finitely many periodic points. Moreover, if there are no wandering points, then the situation will depend on the rotation number. In the rational case the homeomorphism is symbolically equicontinuous with the symbolic shadowing property and, in the irrational case, the homeomorphism is symbolically expansive, symbolically distal, but not symbolically equicontinuous. We will also introduce a symbolic entropy and study its properties.
Tópico:
Mathematical Dynamics and Fractals
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteProceedings of the American Mathematical Society