Logotipo ImpactU
Autor

BASES AND BOREL SELECTORS FOR TALL FAMILIES

Acceso Abierto
ID Minciencias: ART-0001625524-79
Ranking: ART-ART_A1

Abstract:

Abstract Given a family ${\cal C}$ of infinite subsets of ${\Bbb N}$ , we study when there is a Borel function $S:2^{\Bbb N} \to 2^{\Bbb N} $ such that for every infinite $x \in 2^{\Bbb N} $ , $S\left( x \right) \in {\Cal C}$ and $S\left( x \right) \subseteq x$ . We show that the family of homogeneous sets (with respect to a partition of a front) as given by the Nash-Williams’ theorem admits such a Borel selector. However, we also show that the analogous result for Galvin’s lemma is not true by proving that there is an $F_\sigma $ tall ideal on ${\Bbb N}$ without a Borel selector. The proof is not constructive since it is based on complexity considerations. We construct a ${\bf{\Pi }}_2^1 $ tall ideal on ${\Bbb N}$ without a tall closed subset.

Tópico:

Advanced Topology and Set Theory

Citaciones:

Citations: 8
8

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Symbolic Logic
Cuartil año de publicaciónNo disponible
Volumen84
Issue1
Páginas359 - 375
pISSNNo disponible
ISSN0022-4812

Enlaces e Identificadores:

Artículo de revista