Logotipo ImpactU
Autor

Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector

Acceso Abierto
ID Minciencias: ART-0001260391-5
Ranking: ART-GC_ART

Abstract:

This work presents a perspective of the processes of phytosanitary control in crops, starting with traditional methods and strategies applied for precision agriculture and the use of artificial intelligence and computer vision in this area. Then, the article describes the approach for developing the proposed algorithm based on artificial intelligence and computer vision for phytopathogenic detection. The methodology for the development and validation stages is specifically discussed. Several tests were carried out with the different image processing algorithms studied. Results show how the selected method with Haar filters and Gradient-oriented Histograms performs effectively for identification of phytopathogenic factors, from both qualitative and quantitative analysis.

Tópico:

Smart Agriculture and AI

Citaciones:

Citations: 13
13

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Physics Conference Series
Cuartil año de publicaciónNo disponible
Volumen1126
IssueNo disponible
Páginas012022 - 012022
pISSNNo disponible
ISSN1742-6596

Enlaces e Identificadores:

Publicaciones editoriales no especializadas