Logotipo ImpactU
Autor

Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV

Acceso Abierto
ID Minciencias: ART-0001376231-63
Ranking: ART-ART_A1

Abstract:

A bstract A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at $$ \sqrt{s}=13 $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> </mml:math> TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ ( ℓ = e, μ , τ ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττ bb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.

Tópico:

Particle physics theoretical and experimental studies

Citaciones:

Citations: 74
74

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of High Energy Physics
Cuartil año de publicaciónNo disponible
Volumen2019
Issue3
Páginas1 - 41
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista