Logotipo ImpactU
Autor

A Genre-Aware Attention Model to Improve the Likability Prediction of Books

Acceso Abierto

Abstract:

Likability prediction of books has many uses. Readers, writers, as well as the publishing industry, can all benefit from automatic book likability prediction systems. In order to make reliable decisions, these systems need to assimilate information from different aspects of a book in a sensible way. We propose a novel multimodal neural architecture that incorporates genre supervision to assign weights to individual feature types. Our proposed method is capable of dynamically tailoring weights given to feature types based on the characteristics of each book. Our architecture achieves competitive results and even outperforms state-of-the-art for this task.

Tópico:

Topic Modeling

Citaciones:

Citations: 21
21

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteProceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas3381 - 3391
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista