Logotipo ImpactU
Autor

Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial Vehicles and Machine Learning Algorithms

Acceso Abierto
ID Minciencias: ART-0000083593-16
Ranking: ART-ART_A1

Abstract:

This work presents quantitative prediction of severity of the disease caused by Phytophthora infestans in potato crops using machine learning algorithms such as multilayer perceptron, deep learning convolutional neural networks, support vector regression, and random forests. The machine learning algorithms are trained using datasets extracted from multispectral data captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital camera. The results indicate that deep learning convolutional neural networks, random forests and multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation on potato crops with acceptable accuracy.

Tópico:

Smart Agriculture and AI

Citaciones:

Citations: 115
115

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteRemote Sensing
Cuartil año de publicaciónNo disponible
Volumen10
Issue10
Páginas1513 - 1513
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista