Land cover classification from remote sensing multispectral images has been traditionallyconducted by using mainly spectral information associated with discrete spatial units (i.e. pixels).Geometric and topological characteristics of the spatial context close to every pixel have been either not fully treated or completely ignored.This article provides a review of the strategies used by a number of researchers in order to include spatial and topological properties in image segmentation.It is shown how most of researchers have proposed to perform -previous to classification- a grouping or segmentation of nearby pixels by modeling neighborhood relationships as 4-connected, 8-connected and (a, b) – connected graphs.In this object-oriented approach, however, topological concepts such as neighborhood, contiguity, connectivity and boundary suffer from ambiguity since image elements (pixels) are two-dimensional entities composing a spatially uniform grid cell (i.e. there are not uni-dimensional nor zero-dimensional elements to build boundaries). In order to solve such topological paradoxes, a few proposals have been proposed. This review discusses how the alternative of digital images representation based on Cartesian complexes suggested by Kovalevsky (2008) for image segmentation in computer vision, does not present topological flaws, typical of conventional solutions based on grid cells. However, such a proposal has not been yet applied to multispectral image segmentation in remote sensing. This review is part of the PhD in Engineering research conducted by the first author under guidance of the second one. This review concludes suggesting the need to research on the potential of using Cartesian complexes for multispectral image segmentation.