Bifunctional nanostructured architectures have shown appealing properties, since a single entity can combine the diverse properties of its individual constituents.Particularly, by growing Feoxide domains over Ag nanoparticles, the plasmonic and superparamagnetic properties can be combined in a single particle.Beyond the multifunctionality of this system, there are several properties that emerge from intrinsic factors, such as: interface and/or morphology.In this study, we present the synthesis protocols to obtain two sets of heterocrystals, each one with different morphology: dimer and flower-like.In addition, the magnetization behavior of these hybrid nano-heterocrystals is investigated and discussed.These nanomaterials were built by a seed assisted heterogeneous nucleation process, carried out in organic solvents of high boiling point, using the same batch of silver nanoparticles with a mean size of 6 nm as seeds, and tuning the electron-donor capacity of the reaction environment at the thermal decomposition of the iron precursor.Ag/Fe3O4 heterocrystals with dimer and flower-like morphologies were obtained.The synthesis protocols for generating these types of nanomaterials are discussed step-by-step.Structural and morphological properties were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS).DC magnetization results suggest that the silver/magnetite coupling generates an increase of the blocking temperature in comparison to those obtained from pure magnetite.This behavior could be linked to a possible increase in the magnetic anisotropy produced by an additional disorder at the Ag-Fe3O4 interface.The higher interface area of the Ag/Fe3O4 heterocrystals with flower-like architecture leads to a higher blocking temperature and a stronger magnetic anisotropy.These results are supported by AC susceptibility data.