Logotipo ImpactU
Autor

SEAbIRD: Adaptable Daily Living Activity Identification from Sensor Data Streams

Acceso Abierto
ID Minciencias: ART-0000221457-283
Ranking: ART-GC_ART

Abstract:

One of the biggest concerns in Ambient Assisted Living (AAL) proposals is helping the population of elderly people in order to maintain their independence and autonomy. A relevant task done by AAL is the automatic inference of a person's activities of daily life (ADL) from data streams recorded by sensors deployed on an active environment. This work proposes an ADL discovering system which consider factors as personal behavior changes and respect for privacy. The proposed system is tested and validated under a dataset from a real user. The results show that our system can operate adequately on a real scenario with the respective constraints. The main contribution of this work is a system for ADL detection that can adapt to user's behaviors changes without retraining the model, considering sensor failures and preserving the user's privacy.

Tópico:

Context-Aware Activity Recognition Systems

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteProcedia Computer Science
Cuartil año de publicaciónNo disponible
Volumen130
IssueNo disponible
Páginas939 - 946
pISSNNo disponible
ISSN1877-0509

Enlaces e Identificadores:

Publicaciones editoriales no especializadas