Abstract An operator T acting on a Banach space X satisfies the property ( UW Π ) if σ a ( T )∖ <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mtable> <m:mtr> <m:mtd> <m:msub> <m:mi>σ</m:mi> <m:mrow> <m:mi>S</m:mi> <m:msubsup> <m:mi>F</m:mi> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mo>−</m:mo> </m:mrow> </m:msubsup> </m:mrow> </m:msub> </m:mtd> </m:mtr> </m:mtable> </m:math> $\begin{array}{} \sigma_{SF_{+}^{-}} \end{array} $ ( T ) = Π ( T ), where σ a ( T ) is the approximate point spectrum of T , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mtable> <m:mtr> <m:mtd> <m:msub> <m:mi>σ</m:mi> <m:mrow> <m:mi>S</m:mi> <m:msubsup> <m:mi>F</m:mi> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mo>−</m:mo> </m:mrow> </m:msubsup> </m:mrow> </m:msub> </m:mtd> </m:mtr> </m:mtable> </m:math> $\begin{array}{} \sigma_{SF_{+}^{-}} \end{array} $ ( T ) is the upper semi-Weyl spectrum of T and Π ( T ) the set of all poles of T . In this paper we introduce and study two new spectral properties, namely ( V Π ) and ( V Π a ), in connection with Browder type theorems introduced in [1], [2], [3] and [4]. Among other results, we have that T satisfies property ( V Π ) if and only if T satisfies property ( UW Π ) and σ ( T ) = σ a ( T ).